Mathematical Biology


From the infinitesimal universe of a single molecule to vast ecosystems, 数学为生物系统的结构和行为方面提供了重要的见解.

进入这个跨学科领域的学生处于理解和解决问题的新时代的前沿, 利用尖端的计算建模和理论分析来推动我们对生命世界如何运作的理解.

Imminent challenges in epidemiology, pharmaceutical chemistry, and public health policy are critical issues for our students, who actively participate in faculty research. This student involvement is greatly advantageous. Collaborating in a dynamic project-oriented milieu, 学生有机会与我们经验丰富的教师建立独特而富有成效的工作关系, 这是迈向科研事业的宝贵的第一步, biohealth, or a variety of related industries. 

我们的学生和教师一起用明天的思想和技术迎接今天的挑战, expanding knowledge, driving innovation, and finding solutions.

劳伦斯理工学院的数学生物学小组使用尖端的数学和计算技术来解决以下领域的重要生物学问题:

math bio epidemiology

Mathematic Epidemiology

Cause, course, and control. 流行病学家试图指导公共卫生政策,以减轻疾病在各种干预措施下的传播或准确预测疾病的传播.

我们的教师和学生积极参与开发数据驱动的预测模型,以预测和帮助预防COVID-19等传染病的传播, HIV, and Influenza. 数学建模提供了一种定量的方法来理解疾病传播的动态,并为公共卫生政策制定提供知情的背景.

我们与MDHSS的关系使学生有机会使用现实世界的数据, 让利记sbo毕业生获得第一手经验,这使得他们不仅可以在医学研究领域获得有价值的工作, but across a diverse array of related fields. 

Involved faculty: Bruce Pell, Matthew Johnston, Patrick Nelson

math bio systems-biology

Systems Biology

通过发现小块之间的相互作用,找到一个“大局”的视角. This is what Systems Biology is all about.

Through advanced computational modeling and simulation, 我们可以对控制细胞功能的潜在生化过程有更全面的了解.

Students play an active role in this dynamic research, 使用尖端技术来模拟生化反应系统的复杂行为, such as signal transduction cascades and gene regulatory networks, 为开发新的疾病治疗方法作出必要的努力, 促进新生物技术的设计和有效实施.

Involved faculty: Matthew Johnston

mathematic bio virus-nutrient

Within-Host Virus-Nutrient Models

Mathematical modeling offers a profoundly clarifying view of life, death, and decay in the environment.

By illuminating our understanding of the energy nutrient cycle, this modeling offers not just a map by which to understand nature, 而且可能是保护人类在地球上生存的蓝图.

我们的教师和学生正在细胞和分子水平上探索植物传播病毒与其环境之间复杂的相互作用. With far-ranging applications for virology and agriculture, 他们的工作使人们更全面地了解疾病对选定生态系统的影响,并为开发新的医疗方法奠定基础.

Involved faculty: Bruce Pell

math bio medicine

Mathematical Medicine

数学医学代表了思想和行动的完美结合——为人类造福的实践原则.

我们通过微积分将数学概念引入公共卫生领域, statistics, 以及先进的建模和分析,以了解和预测Covid-19等疾病的传播, HIV, and Influenza.

学生们积极参与这一严谨而有益的追求, 利用复杂的计算模型提供对糖尿病的基本见解, cancer, and heart disease. Together, we are paving the way for new therapeutic advances for drug delivery, 帮助确定阿尔茨海默氏症和其他精神健康问题的治疗策略, and creating the foundation for the next generation of biotechnology, such as artificial limbs and magnetic resonance imaging.

Involved faculty: Patrick Nelson, Destiny Anyaiwe

math bio bioinformatics

Bioinformatics

使用计算机编程和统计学来分析和解释生物数据正在彻底改变像遗传学这样多样化的领域, medicine, and agriculture. 它代表了我们用科学来理解科学的一个大胆的新方向, and it is facilitating ambitious projects such as genome sequencing, drug discovery, and the development of personalized medicine. This is the power of bioinformatics.

这个充满活力的跨学科学科的学生受益于将理论付诸行动的合作方法. They are directly involved in data collection, result analysis, algorithm development, lab assistance, and writing code.

他们在这里的经验的深度和广度不仅为他们提供了复杂的问题解决技术的坚实基础, 但在不断变化的生物医学行业中,这需要科学研究和方法论方面的专业知识,这为他们寻找有回报的职位提供了优势.

Involved faculty: Destiny Anyaiwe


Our People



Academic Team

Headshots_0001_nelson

Patrick Nelson

Headshots_0002_Johnston

Matthew Johnston

Headshots_0003_Pell

Bruce Pell

Headshots_0004_anyaiwe

Destiny Anyaiwe

Relevant Publications


Tin Phan, Samantha Brozak, Bruce Pell, Anna Gitter, Amy Xiao, Kristina D. Mena, Yang Kuang, Fuqing Wu. 基于废水监测数据估算COVID-19流行率和预测SARS-CoV-2传播的简单SEIR-V模型. Sci. Total Environ. 857:159326, 2023.
Bryan S. Hernandez, Patrick Vincent N. Lubenia, Matthew D. Johnston, Jae Kyoung Kim, 导出生化反应网络的分析长期行为的框架. Submitted, 2022.
Bruce Pell, Samantha Brozak, Tin Phan, Fuqing Wu, Yang Kuang, 基于废水的无害延迟微分方程模型以理解SARS-CoV-2变体的出现. Submitted, 2022. Preprint available at arXiv:2209.07563.
Bruce Pell, Matthew D. Johnston, and Patrick Nelson, 数据验证的COVID-19在密歇根州传播的临时免疫模型. Math. Biosci. Eng., 19(10):10122-10142, 2022.
Matthew D. Johnston, Bruce Pell, and Patrick Nelson, 弗吉尼亚州疫苗接种状况对COVID-19传播的数学研究. Appl. Sci., 12(3):1723, 2022.
Bruce Pell, Tin Phan, Amy Kendig, Elizabeth Borer, Yang Kuang. 用常微分方程和时滞微分方程模拟植物-病原体系统中的营养和病害动力学. Michigan Academician 48(1):82, 2021.
Matthew D. Johnston, Analysis of Mass-Action Systems by Split Network Translation. J. Math. Chem., 60:195-218, 2021.
Matthew D. Johnston and Bruce Pell, COVID-19传播中对感染的恐惧和对社交距离的挫败感建模的动态框架. Math. Biosci. Eng., 17(6):7892-7915, 2020.
Darrell M. Wilson, Patrick W. Nelson, et al., 898-P:从试验到预防研究,CGM指标可识别OGTT正常受试者的血糖异常状态. Diabetes, 68(Supplement_1), 2019.
Alan S. Perelson and Patrick W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review, 41(1):3-44, 1999.